

PGF-SP CDR Part Four

Prepared by: Bionetics

Date:09/10/2002

Agenda

Part Four

System Summary and Project Status

11:00 - 11:30

- Weight and Center of Gravity
- Power Usage

– Lunch 11:30 - 12:00

12:30 - 2:30

- Risk Overview
- Reliability and Maintainability
- Hazards and Material Usage
- Flight Testing

Agenda

Part Three

System Summary and Project Status

2:30 - 3:00

Project Status and Schedule

Reviewers comments

3:00 - 4:30

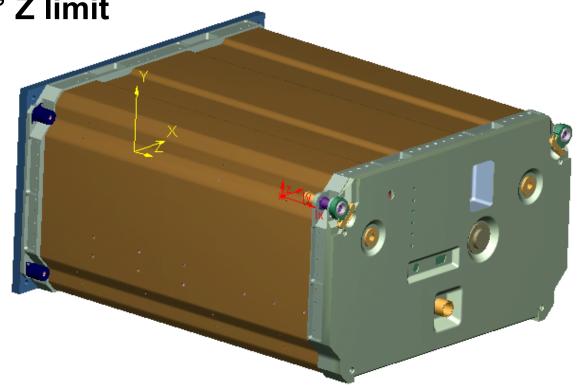
System Summary

System Requirements Compliance

- Rolled up budgets
 - System performance
 - Weight and CG
 - Reliability
- Maintenance
- Replacement items and plan
- Diagnostic systems
- Material Usage List
- Single point failures
- Redundant systems
- GUI Review/Human Factors

System Weight

- Current Weight estimate based on SolidWorks solid computer models
 - Includes two GFP imagers at 2.7 lbs.
 - Some items omitted
 - Some fasteners
 - Internal and MTL Cooling loop water
 - MTL cooling loop hoses, tees, connectors
 - Some insulation
 - Some small brackets and air baffles
 - Wires
 - Current Model Weight
 - 60 lbs
 - Well within 69 lb limit


System Center of Gravity

 Current Center of Gravity estimate based on SolidWorks solid computer models

-X, Y, Z = 0.095, 0.045, 9.713

Power Usage

- Power Usage Estimate based on thermal analysis model for system
- Includes 1.15 Factor of Safety on TEC power for modeling uncertainty
- Includes 1.4 Factor of Safety on TEC power for dynamic variations
- Base on 35 cfm of cooling air on Middeck
- Based on 30°C (86°F) cabin/avionics air and EVA
- TAGES-2SD 22°C and 80 µmoles/m²/sec
- RASTA 23°and 300 µmoles/m²/sec
- Based on 90% EMI filter efficiency
- Based on 85% DC/DC converter efficiency

Power Usage

	Power Usage (Watts)			
Device (both chambers)	TAGES-2SD	RASTA		
LED Banks	15.6	57.2		
PGC Heaters	4.8	0		
PGC Fans and Sensors	4	3.78		
Cooling Loop Pump	7	7		
TECs	40.6	36.2		
Locker Fans	13.1	13.1		
Filtration Pumps and Valves	1.8	1.8		
Nutrient Pumps	.8	.8		
Electronics	12	12		
Hand Held Interface	12	12		
Power Converters/Filters	39.4	48.4		
Total Power Demand	151.1	193.1		

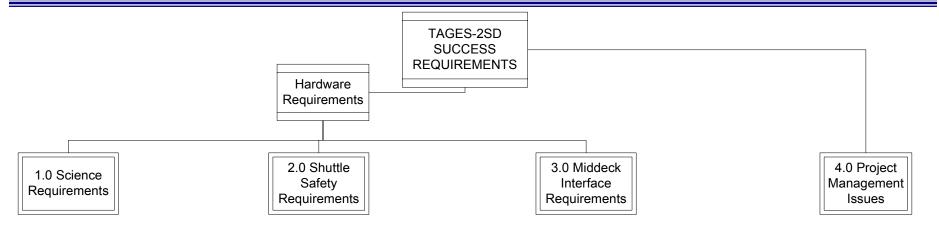
Risk Overview

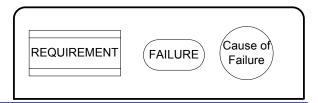
- Overview of Procedure
- List of key risks
- Risks not retired and there current levels
- Mitigation Efforts
- Statement that our risk has been reduced to acceptable levels.

Risk Management

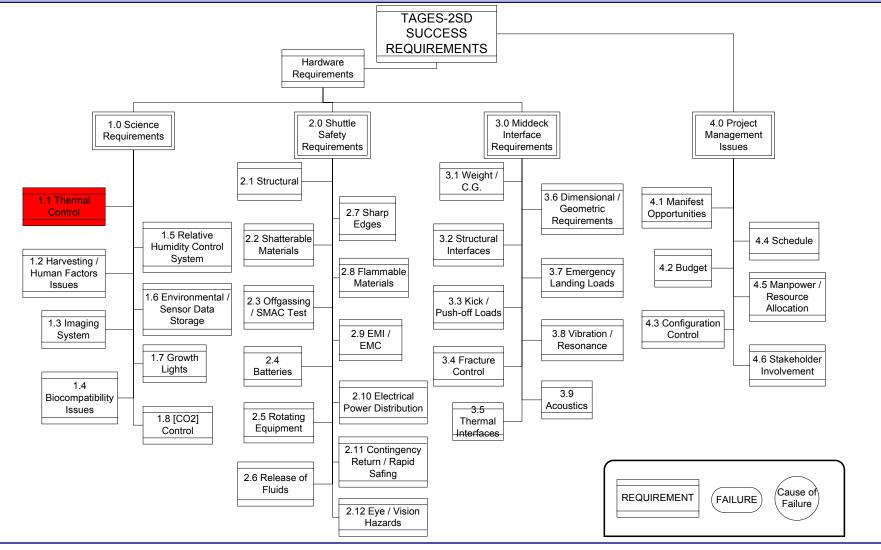
- Risk Management procedures adopted
 - Identify risks
 - Evaluate
 - Document corrective action plans
 - Track corrective action plans
- Improves hardware development process by preventing issues from becoming failures
- Process and techniques captured in
 - TAGES-2SD Risk Mgmt Plan
- Database used to capture and track individual risks

Risk Management Procedure

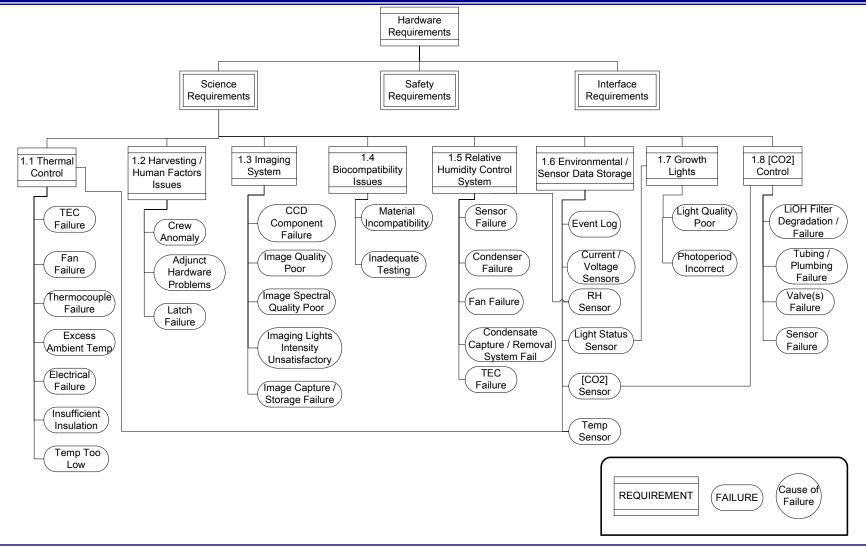



- Risks identified through formal and informal processes
 - Brainstorming
 - Preliminary Fault Tree Analysis
 - Daily activities
- Preliminary Fault Tree Analysis
 - Relates parent requirements to potential causes of failure
 - Systematically identifies risks using Fault Tree methods
 - Highly structured and thorough

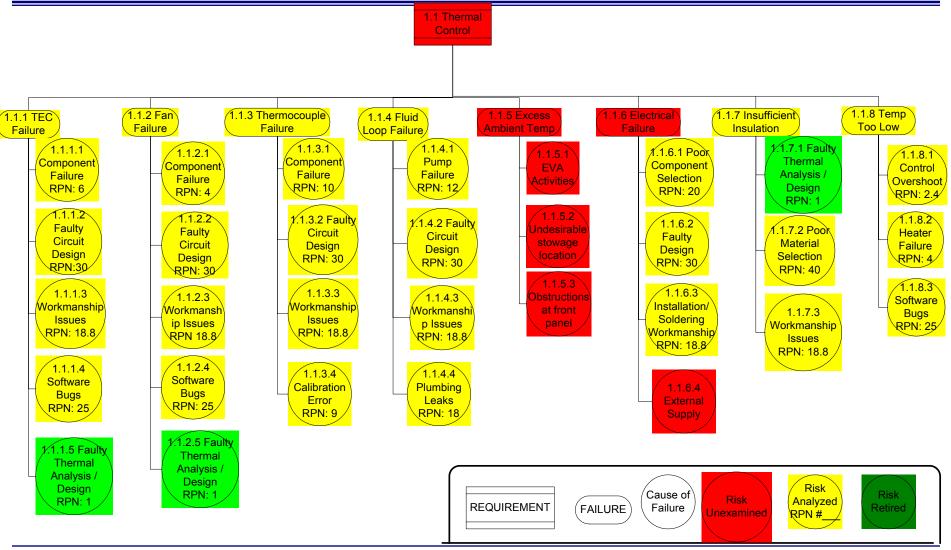
Fault Tree Analysis - Top Level Requirements



Fault Tree Analysis - Requirements



Fault Tree Analysis - Failure Identification



Fault Tree Analysis - Failure Root Causes

Risk Tracking and Reduction

- Risks are evaluated based on there Risk Priority Number (RPN)
- RPN = Probability of Occurrence x (1-probability of detection) x Magnitude of Impact x 100
- Most risks should be reduced or retired by CDR
- No open risks with RPN > 10
- No more than five risks between 5 and 10
- Many risks retired by CDR process
- Some additional work required to retire outstanding risks

Risk	Initial RPN	Corrective Action	Status	Retirement Event	Assignee
Dehumidifier Development	300	Protect electronics with conformal coating, test in KC135	1g evaluation successful, zero g test planned, Oct	KC-135 test	M. Kelsch
Changes in requirements	262.5	Review requirements and performance at CDR	CDR	CDR	M.Kelsch
Limited manifest opportunities	131.3	Watch, design to improve manifest ability	No change	Flight assigned	K. Norwood
Schedule slips	98.0	Improve schedule accuracy	Rescheduling for FY03	PVT	K. Norwood
Late Design Changes	80.0	Team Review post CDR changes	CDR	PVT	M. Kelsch

Risk	Initial RPN	Corrective Action	Status	Retirement Event	Assignee
Water Containment	70	Pressure check lines, add humidity sensor and screens to locker	Screens and humidity sensors added to design	CDR	M. Kelsch
GFP Imager Development	70	Develop technical requirements from test	SVT completed feedback to design	GFP Imager CDR	T. Murdoch
Limited budget	62.5	Reduce prototype and breadboard efforts	Developing FY03 Budget	PVT	B. Wells
Air filtration system fails on orbit	60.0	Mix specimens in chambers for redundancy, improve component reliability	GFP Imager in both chambers, additional cartridges provided	CDR	M. Kelsch

Risk	Initial RPN	Corrective Action	Status	Retirement Event	Assignee
Software fails on orbit	45	Careful design and early testing	Architecture and base design complete	Mission	D. Platt
Poor insulation selection	40	Careful material review and analysis	Last-A-Foam selected and analyzed	CDR	M. Kelsch
GFP imager fails on orbit	30	Redundant imagers	Redundant imagers in design	CDR	M. Kelsch
No reliability and quality requirements in EIS	20	Add Reliability requirements and risk management to project	Reliability requirements and risk management added to project	CDR	M. Kelsch

Risk	Initial RPN	Corrective Action	Status	Retirement Event	Assignee
Poor component selection	20.0	Careful selection of proven parts, reliability analysis	Reliability Analysis complete on flight design	CDR	T. Murdoch
Poor Workman- ship	18.8	Review WADs with technician/ engineer	No work on WADs	WADs reviewed	M. Kelsch
Insufficient integration and testing	18.0	Draft integration and test plan by CDR	Test plan in CDR	CDR	M. Kelsch
Middeck/ISS interface differences	15	Compare requirements, review differences at CDR	Summary comparison in CDR package	CDR	M. Kelsch

Risk	Initial RPN	Corrective Action	Status	Retirement Event	Assignee
Temperature sensor failure	10	Redundant temperature sensing in PGC	Redundant sensing not added	Design changed	T. Murdoch
Coolant Pump Failure	10	Determine reliability of pump, change if needed	Reliability of pump is .98 for 25 day mission, added to limited life list	CDR	M. Kelsch
Temperature sensor calibration error	9.0	Use digital devices, calibrate to high accuracy standard	Calibration plan required	Calibration plan complete	M. Kelsch

Risk	Initial RPN	Corrective Action	Status	Retirement Event	Assignee
Inadequate thermal control	7.5	Redesign, analyze and test new design	Redesigned, analysis complete, more testing required	Ground testing of breadboard complete	M. Kelsch
CDMS fails on orbit	6.0	Provide autonomous operation and manual capture of images	Autonomous operation and manual imaging added to architecture	Software design completed	D. Platt
On orbit failure of locker circulation fan	6.0	Determine reliability of fan, make limited life item if required	Fan MTBF not determined, added to limited life items	CDR	M. Kelsch

Risk	Initial RPN	Corrective Action	Status	Retirement Event	Assignee
Poor component selection	20.0	Careful selection of proven parts, reliability analysis	Reliability Analysis complete on flight design	CDR	T. Murdoch
Poor Workman- ship	18.8	Review WADs with technician/ engineer	No work on WADs	WADs reviewed	M. Kelsch
Insufficient integration and testing	18.0	Draft integration and test plan by CDR	Test plan in CDR	CDR	M. Kelsch
Middeck/ISS interface differences	15	Compare requirements, review differences at CDR	Summary comparison in CDR package	CDR	M. Kelsch

Risk	Initial RPN	Corrective Action	Status	Retirement Event	Assignee
TEC Failure	6.0	Evaluate TEC reliability, add to limited life item list	Reliability of three TECs is .947, added to limited life items	CDR	M. Kelsch

Risk Summary

- Most risks addressed by design reflected in CDR package
- Some risks still outstanding
 - Cooling and dehumidification system performance
 - Budget and schedule
 - Individual component reliability
- Additional work reflected in schedule

Reliability Analysis

- Reliability analysis was performed on individual boards to determine there ability to survive one mission
 - 125 days total operation
- Reliability was calculated using methods and values from MIL-HDBK-217F
 - Conservative failure rate distribution
 - Conservative treatment of commercial electronics
- EIS Reliability requirement of 90% after 120 day mission
- Risk management requires overall mission success to be guaranteed by 98.3% probability
 - Some science return

Reliability

- The reliability of each component was then used to determine the basic reliability of the PGF-SP subsystems
- The components used came from the flight design schematics
- Factors such as temperature, hours of use, part quality, environment, and stress were used to determine reliability


Reliability Results

	Basic Reliability at 3000 hours	Basic Mean Time Between Failures (MTBF)
Power Module	96.72%	89,986
PGC Control Board	98.30%	174,966
LLM	99.66%	880,852
CDMS	94.69%	54,984

Example Reliability Calculation

PGC LED Illumination Board

		Fuse	Mosfet	Resistor	LED
Part Number		1 430	ZNV4306A	110313101	APTD3216
quantity		5	3	6	434
base failure rate	Lb	0.01	0.012	0.00098	0.00023
temperature factor	Pt	N/A	1.6	N/A	2.1
quality factor	Pq	N/A	8	15	8
environmental factor	Pe	0.9	0.5	0.5	0.5
application factor	Pa	N/A	0.7	N/A	N/A
resistance factor	Pr	N/A	N/A	1	N/A
failures/10^6 hours	Lp	0.009	0.05376	0.00735	0.001932
Reliability	R(3000)	0.999973	0.999839	0.999978	0.999994
	Basic Reliabili	Basic Reliability = .9966 = 99.66%			
	MTTF (hours) MTTF (years)	111,111,111 12,684	8,680,556 991	136,054,422 15,531	517,598,344 59,087
	Basic MTTF =	880852 hours			

Reliability and Maintainability

- Reliability predictions will be used to evaluate designs and make changes to component selection or redundancy designs
- Reliability predictions will also be used to determine the rate of replacement for various PGF-SP components
- The PGF-SP is intended to operate for up to four (4) missions
- Some items may require replacement between missions to improve reliability
- More analysis is required with improved accuracy to prevent unnecessary maintenance

Limited Life Items

- Preliminary list
- Items to be replaced after each mission
 - Locker Attachment Bolts
 - All Fans and impeller
 - Coolant Circulation Pump
 - Thermoelectric coolers
 - Power converters

Structural Failure

- APML -
 - Structural analysis
 - Sine sweep and vibration testing
- CCDL
 - Structural analysis
 - Sine sweep and vibration testing
- Sharp Edges
 - All accessible equipment
 - Design to requirements
 - Post assembly inspection

- Electrical Shock
 - 28 volt supply and 24/12/4 volt internal
 - No exposed bare contacts
 - Insulated wire
- Batteries
 - Clock battery
 - Already approved for use on Magnetic Field Apparatus (MFA) equipment
- Touch Temperature
 - Thermal Control System
 - Analyzed for maximum operating temperature
 - Temperature sensors and software cutoff on heat sources

- Touch Temperature (continued)
 - Electronics/Power Converters
 - Contained in electronics housing
- Rapid Safing
 - Tray Insert Assembly
 - Easy drawer slide operation
 - Root Tray Modules
 - Easy Installation
- Radiation-nonionizing
 - No sources of radiation

- Rotating Equipment
 - Locker Cooling Fans and PGC Circulation
 Fans
 - Finger guards to be added
 - Thread locking inserts on fasteners
- Mating and Demating of Power Connectors
 - Main power connector
 - Designed in accordance with Middeck and EXPRESS Rack IDDs

PGF-SP Standard Hazards

- Flammability and Off gassing of materials
 - Significant plastic construction including
 - Polycarbonate
 - Polyurethane foam (last-a-foam)
 - PEEK
 - Delrin
 - 966 acrylic adhesive
 - Materials selected which are UL94-V0 rated
 - Materials selected which are approved or similar to approved materials

PGF-SP Unique Hazards

- Release of Hazardous Materials
 - Lithium Hydroxide (120 grams in PGF-SP)
 - Potassium Permanganate (8 grams in PGF-SP)
 - Stowed replacement cartridges
 - Double filter design to prevent escape
 - Stainless steel mesh
 - Filter paper
- Release of Non-hazardous Materials
 - Coolant Water (deionized water)
 - 60 ml per loop, two loops
 - Pressure tested lines and fitting

PGF-SP Unique Hazards

- Release of Non-hazardous Materials (continued)
 - Recovered condensate
 - Pressure tested lines and fittings
 - Relief to condensate collection unit or Nutrient reservoir
 - 60 ml reservoir
 - Double contained reservoir
 - Nutrient Solution
 - Pressure tested lines and fittings
 - Relief to root tray module
 - 100 ml reservoir
 - Double contained reservoir

PGF-SP Unique Hazards

- Release of Non-hazardous Materials (continued)
 - Moderate Temperature Water Loop Coolant
 - Pressure tested lines and fittings
- Eye Damage
 - High intensity LEDs
 - Prolonged close range viewing may cause damage
 - Interlock on front door to place system in stand-by mode (lights off) when locker opened
 - Crew training to inform them of hazard
 - Label on root trays noting hazard

Critical Item List

- Structural Equipment
 - APML
 - CCDL
- Pressure Vessels and Lines
 - All water lines and fittings
 - Nutrient Reservoir
 - Priming Reservoir

Critical Item List

- Safety Limits/Sensors
 - Main breaker
 - Main outlet thermostat
 - Inlet and outlet temperature sensors
 - Heat sink temperature sensors
 - Front door interrupt switch

Material Usage - Metals

Item	Material	Construction
APML (Locker)	7075-T73, 7050-T73	Chromate Coating
Locker Paint	Per EXPRESS Rack IDD	
Locker Latches, Tray Latches	15-5PH H1025	Passivated
Electronics Housings	6061-T6	Chromate Coating
Heat Sinks	6061-T6	Chromate Coating
Support Brackets, Cowlings, Baffles	6061-T6	Chromate Coating

Material Usage - Non-Metals

Item	Material	UL94 Rating
PGC Housing structural elements, Reservoir housings	Polycarbonate 900 series LEXAN	V0
PGC Face sheets and LED Window	Polycarbonate FR-60 LEXAN	V0
Face Sheet Adhesive	3M 966 acrylic film transfer	Unknown
Dehumidifier Sponge	Polyvinyl alcohol	Unknown
PGC Insulation Foam	Last-A-Foam 6703	Unknown
PGC internal paint	MIL-PRF-85285C	Unknown

Material Usage - Non-Metals

Item	Material	UL94 Rating
Electronics Support Bracket, other support pieces	Fiberglass G10/FR4	V0
Carbon Dioxide and VOC Scrubber Bodies	Polycarbonate 900 series LEXAN	V0
Low pressure water lines	Platinum Cured Silicone Tubing	Unknown
Filtration Air Lines	TYGON Food and Beverage	Unknown
Small Diameter Water Lines	Lee MINSTAC Tubing	Unknown

Material Usage - Non-Metals

Item	Material	UL94 Rating
Foam insulation, electronics housing	Silicone Foam (TBD)	V0
Water and Air manifolds	PEEK	V0
Fan Housings and blades	Black Plastic	V0
Motorized Impeller	Unknown	Unknown
Wiring	Copper with Teflon insulation	V0

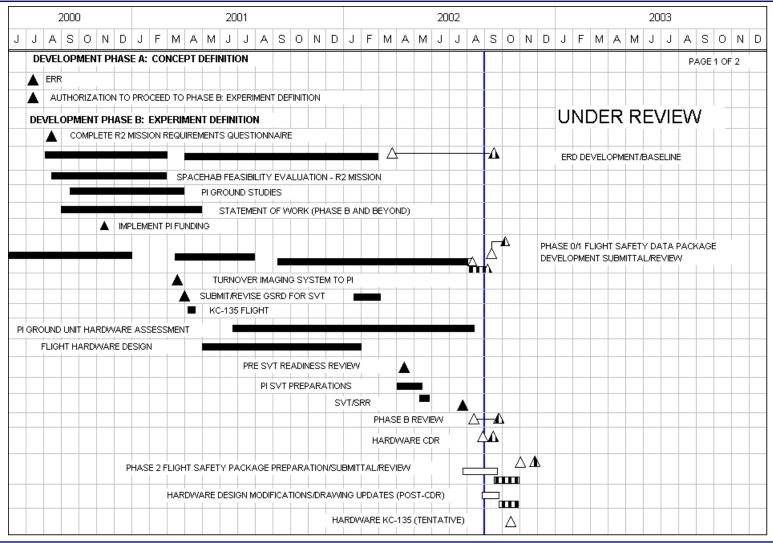
Flight Hardware Testing

- Structural Testing
 - Middeck random vibration/sine sweep
- Environmental Testing
 - Functional and performance testing
 - Safe Operation and safety limits
- Electrical
 - EMI/EMC
 - Shuttle and ISS interface simulation
 - Voltage range
 - Grounding and isolation

Flight Hardware Testing

- Software Function
 - Fault tolerance
 - Data storage/retrieval
- Inspection
 - Overall Dimensions
 - Weight and Center of Gravity
 - Operator Interfaces
 - Sharp edges
- Science Verification
 - Payload Verification Test

Project Status



- ERDs and EIS in review
- Prototype fully tested
- Thermal Control Breadboard (new cooling and dehumidification design) completed and partially tested
- Science Readiness Review Completed
- Flight Design of Single Locker System 90%Complete
- Assembly Drawings Started

Project Schedule

Project Schedule

			200)								2	200	1											20	02											20	003				
J	J	Α	S	0	N	D	J	F	N	1 A	N	/ J		J	Α	S	0	N	D	J	F	М	Α	М	J	J	Α	S	0	N	D	J	F	М	Α	М	J	J	Α	S	0	N D
											Ť		Ť				F	LIGHT	HAF	RDV	/ARE	FAE	BRICA	ATIO	N.						ш	7						T	PAG) 3E 2 0	—— ⊃F 2	
	DEV	ÆL.	OPN	IEN]	r PH	ASE	СÆ	: DE	- EVE	LOF	PME	NT A	NE	IN C	TEC	RA.	TIOI	N																								
																		AFT/S	SUBN	/IT T	L RAIN	IING	L PLAI	N					Δ							١.	-				-	_\
											DR	AFT/	SÜE	EMIT	IRE	REC	QUE:	ST FC	R A	PPR(DVA	L LE	TTER	i	'				Δ							ţ۷	N,	ŅΕ	:K	KE	:VI	ΕW
													T		DE	VELC)P/S	UBMI	T CRI	EW F	PROC	CEDL	; JRES																			
											†	CRE	WE	AM	ILIA	RIZA	HOIT.	N PRE	PAR	ATIO	 N/PI	 Rese	H ENTA	HOIT.	J																	
											+												ERTI			I TES		111					5									
											$^{+}$		$^{+}$	\forall											_		GSRI	D FC	R PV	/T		Δ										
																					PI	SCIE	NCE	TES	T IN I	FLIG	нт н	ARD	WAR	ŘΕ	'											
																									H	ANE	s-o	N CF	EW.	TRAI	NING			Δ								
												Ь	 НА9	 SE 3	E FI I	GHT	(GR)	UND	SAF	FETV	PRE	-DAR	 PATIC) NAS	 LI⊟M	 ITTΔ	LÆF	VIEW	l v					L		Δ.						
			-						H	+	+	+			, , _		~10		0/1		1100	-1 -01		1475	ODIVI	-	SUBI		-	MAL	PED	L ∩RT		\triangle	Δ		-	+			\dashv	
			-							+	+	+	+	+													_				REVI				Δ			-		\vdash	\dashv	
										+	+		+	+																					-							
																																F	PVT/I	PRR	-			Δ				
																											5	SUBN	VIT V	VEIG	HT/C	3 TE	STR	EPO	RT			$\perp \triangle$				
																								S	UBM	IT EN	/II/AC	OUS	TICS	MB	RATI	ON T	EST	REP	ORT:	S		Δ	_			
																															P	HAS	ECI	REVI	ĒΨ				<u> </u>			
																												COF	R 6-	M EN	IDOR	SEM	ENT	SUB	MITT	AL			Δ			
																																S	UBN	AIT H	MST	STE	P 1			Δ		
DE	VE	LOI	PME	NT F	PHAS	SE E:	OF	PERA	ATI	ONS	AN	D AI	VAL	YS	IS																FL	IGHT	REA	ÁDINI	ESS	REV	ÏEW			Δ		
																																	GR	OUN	D O	PER/	ATIO	NS			=	-
																																				BEN	CH R	RÉVIE	Ŵ		Δ	
											\dagger	\dagger	+																			LAI	JNCI	H NE	T DE	 ECEN	⊨ 4BER	200	3	\Box	\top	1
			\vdash								+	+	+	\dashv																				· · ·		-	+	-	-			004)
			+						-	+	+	+	+	+																							+	-	i	1		
																																			FINA	AL M	LEPU L	rti (L	/EUEI	MBER	. 2004 ———	+)

CDR Summary

- Open Issues
 - Some risk reduction efforts still required
 - Thermal control and dehumidification
 - Reliability
 - Locker modifications and structural analysis required
 - Design of double locker configuration required
- Ready to complete testing and analysis and begin flight fabrication

Review of Action Items

Review of review action items